What is LoRa and when should it be used?

A look at a memory and storage efficient technique to fine-tune large models

Ibrahim Habib

2025-06-14

Table of contents
1 How does LoRa work? 2
2 Memory Efficiency 2
3 Storage Cost Cuts 3
4 Quality Conservation 3
5 Conclusion 4

5.1 References e 5

With the recent advancements in LLMs, the size of models continues to grow, and fine-tuning
models is becoming increasingly expensive. The rise of this issue led to an increased interest
in parameter-efficient fine-tuning (PEFT) techniques. With over 15,000 citations !, Low-Rank
Adaptation of Large Language Models (LoRa) is one of the world’s most popular PEFT tech-
niques.

LoRa is a great technique for minimizing memory requirements when fine-tuning LLMs or other
large neural networks and cutting down on storage costs when deploying multiple adaptations
of the same model while suffering negligible performance degradation.

In this article, we will first understand the workings of LoRa. Then, we’re going to support
the argument mentioned earlier and see how LoRa offers efficiency.

IThis number is based on Google Scholar on the date of publishing the article.

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

1 How does LoRa work?

Before we introduce LoRa, let’s consider how classic fine-tuning works. Let’s say you have a
pre-trained weight matrix W, € R™*™. In classical fine-tuning, the task is to find a new weight
matrix AW € R™*" such that the layer output y = Wyx + AWz minimizes the cost function
of the new training dataset.

Note that in this method, we have m x n learnable parameters corresponding to each entry in
the AW matrix as each value is computed independently of the others.

LoRa uses the same general formula but computes AW differently. LoRa defines the AW by
decomposing it in the following manner.

AW = BA

where B € R™*", A € R™", and r << min(m,n). Note that the product of B and A has
the same dimension as the original AW matrix; hence, this decomposition is valid and we can
plug it into the equation defining the new output.

Now, the number of trainable parameters is r(m-+n). Since r is much smaller than both m and
n, the number of trainable parameters in LoRa is much less than that of classical fine-tuning.

2 Memory Efficiency

The first thing I want to highlight about LoRa is its memory efficiency. According to (Hu et
al. 2021), LoRa reduces VRAM usage by up to two-thirds for large transformers trained by
Adam provided we choose an appropriate value for 7.

During classical fine-tuning, we need to store the full optimizer state for all parameters in the
model since they are all trainable. Since r is much smaller than the dimension of the original
matrix, in LoRa the number of parameters to train is much smaller consuming less memory
space.

With the continuous increase in LLM sizes, memory is becoming the bottleneck for fine-tuning
LLM tasks. LoRa permits us to work with large models without spending large sums of money
on huge VRAM GPUs.

A positive side-effect caused by the VRAM minimzation is the need of less GPU-hours. Since
less memory is needed when LoRa is used, we can use a bigger batch size using the same GPU.
THe increase in batch leads to a decrease in training time.

3 Storage Cost Cuts

When you use classical fine-tuning, all of the model’s weights are updated. So you end up
with a huge number of new weights, equaling the size of the original model.

Suppose you're fine-tuning a certain foundational model that contains 100 billion parameters
for 10 different tasks using classical fine-tuning. After you finish training all the models, you
want to deploy the 10 models. Let’s focus on the storage requirements imposed by such a
scenario. Since you updated all weights while training each single model, you end up with
10 billion x 10 = 1 trillion new parameters. In general, when fine-tuning n models from the
same foundational model, you end up having to store n times the size of the original model.

Therefore, classical fine-tuning inflicts enormous storage costs for organizations deploying mul-
tiple adaptations of a single model, which is a very common scenario for cloud-based machine
learning services. It doesn’t scale well for multiple adaptaions.

LoRa comes to help also here. As seen in Section 1, the number of new parameters made
by LoRa is much smaller than the number of parameters in the original model. When you
deploy a model fine-tuned by LoRa, you need to store both the original model and all the
new weights created. While this way requires slightly more space when deploying one model,
it offers considerable savings when deploying multiple models because the huge foundational
model is stored only once and only the few newly trained parameters are stored for each
adaptaion.

Hu et al. (2021) demonstrate an example of the storage cost savings offered by LoRa. They
state that fine-tuning GPT-3 175B using LoRa with r = 4 and while adapting only the query
and value projections reduces the checkpoint size roughly 10,000 times (350GB -> 35MB).
So when storing a 100 model fine-tuned from GPT-3, the required storage is reduced from
100 x 350G B =~ 35T B to 350GB + 100 x 35M B ~ 354G B. So around 99% of the costs are
saved by LoRa.

4 Quality Conservation

As with any PEFT technique, there is always the fear that efficiency comes at the cost of
quality. This isn’t the case here, however. LoRa manages to maintain the same or even
improve the quality of the original model.

Actually, as the value r approaches min(m,n), LoRa becomes the same as classical fine-tuning.
We can easily prove this.

Proof. Assume that min(m,n) = m. If r = m, then y becomes

y = Wyr + BAx

where B € R™*™ A € R™*". By setting B to the identity matrix, LoRa becomes the same
as classical fine-tuning as A converges to the same value as W. The same argument can be
applied if min(m,n) = n by flipping A and B. O

Hu et al. (2021) show experimental data supporting the high performance of LoRa-trained
models.

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoByg (FT)* 125.0M| 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 864
RoBpase (BitFit)* 0.IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBhbase (AdptD)* 0.3M|87.14+0 94.24+1 88.5411 60.844 93.147 90240 71.5427 89.7+3 844
RoBhpase (AdptD)* 09M|87.34+1 94.7+3 8844, 62.649 93.042 90.619 759422 9034+, 854
RoBpge (LORA) 0.3M|87.543 951, 89717 63.44,5 9333 90.84, 86.6., 91.5., 87.2
RoB e (FT)* 355.0M| 90.2 96.4 90.9 68.0 947 922 86.6 924 88.9
RoBjye (LORA) 0.8M|90.6+, 96215 90.9.,, 68.2.,9 9493 9165, 87.4.,5 92.6.-, 89.0
RoBiygc (Adpt?)t 3.0M|[90.25 5 96.155 90.24 7 68.3:,0 94.8., 91.9., 83.8,,0 92.1., 884
ROBiaree (Adpt”)t 0.8M|[90.5+3 96.6+2 89.7+12 67.8425 94.843 917+, 80.1429 91914 879
RoBiarge (AdptH)'I' 6.0M|89.9+5 96.24+ 3 88.7429 66.5+44 94.7+2 92,14, 83.441, 91.0417 87.8
RoBuasge (AdptH)T 0.8M[90.3+3 96.3+5 87.7+17 66.3+20 94.7+2 91541 729429 91.5+5 864
ROBjyge (LORA)f 0.8M [90.6. » 96.25 5 90.2.,0 68.25,0 94.8, 5 91.6., 85.2,,, 92.3.5 88.6
DeBxx. (FT)* 1500.0M| 91.8 97.2 92.0 72.0 96.0 92.7 93.9 929 91.1
DCBXXL (LORA) 4. T 91-9:{:.2 96.9:{:.2 92-6i_6 72.4:{:1_1 96-0:{:.1 92.9:{:.1 94.9:t_4 93.0&_;5 91.3

Figure 1: Table 2 from Hu et al. (2021)

As you can see in the above figure, LoRa-tuned models perform very closely or even better
than those using classical fine-tuning (marked FT in the figure).

5 Conclusion

In this article, we discussed the science behind LoRa and its advantages. We first began by
uncovering how LoRa decomposes the AW matrix. Then, we showed that through updating
a smaller number of parameters, LoRa stores less optimizer state and consumes less memory.
By sharing the weights of the original model, LoRa offered considerable storage savings when
deploying multiple variations of the same model. It does all that while maintaining the same
quality of classical fine-tuning as demonstrated by experimental data and its convergence to
classical fine-tuning.

Thanks for reading and I hope this article helped you learn a bit more about PEFT.

5.1 References

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, and Weizhu Chen. 2021. “LoRA: Low-Rank Adaptation of Large Language Models.”
https://arxiv.org/abs/2106.09685.

https://arxiv.org/abs/2106.09685

	How does LoRa work?
	Memory Efficiency
	Storage Cost Cuts
	Quality Conservation
	Conclusion
	References

