Generating Structured Outputs from LLMs

An overview of popular techniques to confine LLMs’ output to a predefined
schema

Ibrahim Habib

2025-07-26
Table of contents
1 Structured Output Generation 2
2 Relying on API Providers ‘Magic’ 2
3 Prompting and Reprompting Based Techniques 3
3.1 Prompting is Not Enough oo oo 3
3.2 Prompting Tools L 3
3.3 The Cost of Reprompting 5
4 Constrained Decoding 5
4.1 How it works? L)
4.1.1 Deterministic Finite Automata (DFA) 6
4.1.2 DFA for Valid Next Tokens Set 7
4.1.3 Applying the DFAto LLMs 7
4.2 Constrained Decoding Tools L 8
5 Conclusion 9
5.1 References 9

Today, the most common interface for interacting with LLMs is through the classic chat Ul
found in ChatGPT, Gemini, or DeepSeek. The interface is quite simple, where the user inputs
a body of text and the model responds with another body of text, which may or may not
follow a specific structure. Since humans can understand unstructured natural language, this
interface is suitable and quite effective for the target audience it was designed for.

However, the user base of LLMs is much larger than the 8 billion humans currently living on
Earth. It also includes millions of software programs that can potentially harness the power of

https://chatgpt.com/
https://gemini.google.com/app
https://deep-seek.chat/deepseek-chat/

such large generative models. Unlike humans, these programs cannot understand unstructured
data, preventing them from exploiting the knowledge generated by these neural networks.

To address this issue, various techniques have been developed to generate outputs from LLMs
following a predefined schema. This article will provide an overview of some of the most
popular approaches for producing structured outputs from LLMs. It is written for engineers
interested in integrating LLMs into their software applications.

1 Structured Output Generation

Structured output generation from LLMs involves using these models to produce data that
adheres to a predefined schema, rather than generating unstructured text. The schema can
be defined in various formats, with JSON and regex being the most common. For example,
when utilizing JSON format, the schema specifies the expected keys and the data types (such
as int, string, float, etc.) for each value. The LLM then outputs a JSON object that includes
only the defined keys and correctly formatted values.

There are various situations where structured output is needed from LLMs. Formatting un-
structured bodies of text is one large application area of this technology. You can use a model
to extract specific information from large bodies of text or even images (using VLMs). For
example, you can use a general VLM to extract the purchase date, total price, and store name
from receipts.

There are various techniques to generate structured outputs from LLMs. This article will
discuss three.

1. Relying on API Providers
2. Prompting and Reprompting Strategies
3. Constrained Decoding

2 Relying on API Providers ‘Magic’

Multiple LLM service API providers, including OpenAl and Google’s Gemini, allow users to
define a schema for the model’s output. This schema is usually defined using a Pydantic class
and provided to the API endpoint. If you are using LangChain, you can follow this tutorial
to integrate structured outputs into your application.

Simplicity is the greatest aspect of this particular approach. You define the required schema
in a manner familiar to you, pass it to the API provider, and sit back and relax as the service
provider performs all the magic for you.

Using this technique, however, will limit you to using only API providers that provide the
described service. This limits the growth and flexibility of your projects, as it shuts the door

https://python.langchain.com/docs/how_to/structured_output/

to using multiple models, particularly open source ones. If the API providers suddenly decide
to spike the price of the service, you will be forced either to accept the extra costs or look for
another provider.

Moreover, it isn’t exactly Hogwarts Magic that the service provider does. The provider follows
a certain approach to generate the structured output for you. Knowledge of the underlying
technology will facilitate the app development and accelerate the debugging process and error
understanding. For the mentioned reasons, grasping the underlying science is probably worth
the effort.

3 Prompting and Reprompting Based Techniques

If you have chatted with an LLM before, then this technique is probably on your mind. If you
want a model to follow a certain structure, just tell it to do so! In the system prompt, instruct
the model to follow a certain structure, provide a few examples, and ask it not to add any
additional text or description.

After the model responds to the user request and the system receives the output, you should
use a parser to transform the string of bytes to an appropriate representation in the system.
If parsing succeeds, then congratulate yourself and thank the power of prompt engineering. If
parsing fails, then the drawbacks of this approach will appear.

3.1 Prompting is Not Enough

The problem with prompting is unreliability. On its own, prompting is not enough to trust
a model to follow a required structure. It might add extra explanation, disregard certain
fields, and use an incorrect data type. Prompting can be and should be coupled with error
recovery techniques that handle the case where the model defies the schema, which is detected
by parsing failure.

Parsers can detect mistakes and incorrect tokens in input text according to grammar rules
(Aho et al. 2007, 192-96). Armed with knowledge of mistakes in the generated outputs, we
can reprompt the model to generate the outputs in the desired format while avoiding the
detected mistake.

Figure 1 depicts the flow used in the prompting based techniques.
3.2 Prompting Tools
One of the most popular libraries for prompt based structured output generation from LLMs

is instructor. Instructor is a Python library with over 11k stars on GitHub. It supports data
definition with Pydantic, integrates with over 15 providers, and provides automatic retries on

https://github.com/567-labs/instructor

Prompt —»{ LM

f New Prompt with Error Info

Output —»{ Parser Follows Grammar
Structured Output

Figure 1: General Flow of Prompting and Reprompting techniques

parsing failure. In addition to Python, the package is also avillable in TypeScript, Go, Ruby,
and Rust. !

The beauty of Instructor lies in its simplicity. All you need is to define a Pydantic class,
initialize a client using only its name and API key (if required), and pass your request. The
sample code below, from the docs, displays the simplicity of Instructor.

import instructor
from pydantic import BaseModel
from openai import OpenAl

class Person(BaseModel):
name: str
age: int
occupation: str

client = instructor.from_openai(OpenAI())
person

client.chat.completions.create(
model="gpt-4o-mini",
response_model=Person,
messages=[
{
"role": "user",
"content": "Extract: John is a 30-year-old software engineer"

1,
)

print(person) # Person(name='John', age=30, occupation='software engineer')

LAll information on the package is based on its documentation at the time of writing this article.

https://github.com/567-labs/instructor-js
https://github.com/567-labs/instructor-go
https://github.com/567-labs/instructor-rb
https://github.com/567-labs/instructor-rs
https://python.useinstructor.com/
https://python.useinstructor.com/

3.3 The Cost of Reprompting

As convenient as the reprompting technique might be, it comes at a hefty cost. LLM usage
cost, either service provider API costs or GPU usage, scales linearly with the number of input
tokens and the number of generated tokens. As mentioned earlier prompting based techniques
might require reprompting. The reprompt will have roughly the same cost as the original one.
Hence, the cost scales linearly with the number of reprompts.

If you're going to use this technique, you have to keep the cost problem in mind. No one wants
to be surprised by a large bill from an API provider. One idea to help cut surprising costs
is to put emergency brakes into the system by applying a hard-coded limit on the number of
allowed reprompts. This will help you put an upper limit on the costs of a single prompt and
reprompt cycle.

4 Constrained Decoding

Unlike the prompting, constrained decoding doesn’t need retries to generate a valid, structure-
following output. Constrained decoding utilizes computational linguistics techniques and
knowledge of the token generation process in LLMs to generate outputs that are guaranteed
to follow the required schema.

4.1 How it works?

LLMs are autoregressive models. They generate one token at a time and the generated tokens
are used as inputs to the same model.

The last layer of an LLM is basically a logistic regression model that aims to calculate for
each token in the model’s vocabulary the probability of it following the input sequence. The
model calculates the logits value for each token, then using the softmax function, these value
are scaled and transformed to probability values.

Constrained decoding produces structured outputs by limiting the available tokens at each
generation step. The tokens are picked so that the final output obeys the required structure.
To figure out how the set of possible next tokens can be determined, we need to visit Regkx.

Regular expressions, RegEx, are used to define specific patterns of text. They are used to
check if a sequence of text matches an expected structure or schema. So basically, Regkx
is a language that can be used to define expected structures from LLMs. Because of its
popularity, there is a wide array of tools and libraries that transforms other forms of data
structure definition like Pydantic classes and JSON to RegEx. This further encourages finding
techniques to generate structured LLM outputs from RegEx definitions.

4.1.1 Deterministic Finite Automata (DFA)

One of the ways a Regkx pattern can be compiled and tested against a body of text is by
transforming the pattern into a deterministic finite automata (DFA). A DFA is simply a state
machine that is used to check if a string follows a certain structure or pattern.

A DFA consists of 5 components.

1. A set of tokens (called the alphabet of the DFA)

2. A set of states

3. A set of transitions. Each transition connects two states (maybe connecting a state with
itself) and is annotated with a token from the alphabet

4. A start state (marked with an input arrow)

5. One or more final states (marked as double circles)

A string is a sequence of tokens. To test a string against the pattern defined by a DFA, you
begin at the start state and loop over the string’s tokens, taking the transition corresponding to
the token at each move. If at any point you have a token for which no corresponding transition
exists from the current state, parsing fails and the string defies the schema. If parsing ends at
one of the final states, then the string matches the pattern; otherwise it doesn’t.

start

Figure 2: Example for a DFA with the alphabet {a, b}, states {q0, g1, g2}, and a single
finale state, q2.

For example, the string abab matches the pattern in Figure 2 because starting at q0 and
following the transitions marked with a, b, a, and b in this order will land us at 92, which is
a final state.

On the other hand, the string abba doesn’t match the pattern because its path ends at qO
which isn’t a final state.

A great thing about RegEx is that it can be compiled into a DFA; after all they are just
two different ways to specify patterns. Discussing such a transformation is out of scope for

this article. The interested reader can check Aho et al. (2007, 152-66) for a discusion of 2
techniques to perform the transformation.

4.1.2 DFA for Valid Next Tokens Set

start

Figure 3: Example for a DFA generated from the RegEx a(blc)*d

Let’s recap what we have reached so far. We wanted a technique to figure out the set of valid
next tokens to follow a certain schema. We defined the schema using RegEx and transformed
it into a DFA. Now we are going to show that a DFA informs us of the set of possible tokens
at any point during parsing, fitting the requirement.

After building the DFA, we can easily determine in O(1) the set of valid next tokens while
standing at any state. It is the set of tokens annotating any transition exiting from the current
state.

Consider the DFA in Figure 3, for example. The following table shows the set of valid next
token while standing at each state.

State Valid Next Tokens
qo0 {a}
ql {v, ¢, d}

q2 {

4.1.3 Applying the DFA to LLMs

Getting back to our structured output from LLMs problem, we can transform our schema to
a RegEx then to a DFA. The alphabet of this DFA will be set to the LLM’s vocabulary (the
set of all tokens the model can generate). While the model generates tokens, we will move

through the DFA, starting at the start state. At each step, we will be able to determine the
set of valid next tokens.

The trick now happens at the softmax scaling stage. By zeroing out the logits of all tokens that
are not in the valid tokens set, we will calculate probabilities only for valid tokens, forcing the
model to generate a sequence of tokens that follows the schema. That way, we can generate
structured outputs with zero additional costs.

4.2 Constrained Decoding Tools

One of the most popular Python libraries for constrained decoding is Outlines (Willard and
Louf 2023). It is very simple to use and integrates with many LLM providers like OpenAl,
Anthropic, Ollama, and vLLM.

You can define the schema using a Pydantic class, for which the library handles the Regkx
transformation, or directly using a RegEx pattern.

from pydantic import BaseModel
from typing import Literal
import outlines

import openai

class Customer (BaseModel):
name: str
urgency: Literal["high", "medium", "low"]
issue: str

client = openai.OpenAI()
model = outlines.from_openai(client, "gpt-4o")

customer = model(
"Alice needs help with login issues ASAP",
Customer

)

Always returns valid Customer object

No parsing, no errors, no retries

The code snippet above from the docs displays the simplicity of using Outlines. For more
information on the library, you can check the docs and the dottxt blogs.

https://openai.com/
https://www.anthropic.com/
https://www.ollama.com/
https://github.com/vllm-project/vllm
https://dottxt-ai.github.io/outlines/latest/
https://dottxt-ai.github.io/outlines/latest/
https://blog.dottxt.ai/

5 Conclusion

Structured output generation from LLMs is a powerful tool that expands the possible use cases
of LLMs beyond the simple human chat. This article discussed three approaches: relying
on API providers, prompting and reprompting strategies, and constrained decoding. For
most scenarios, constrained decoding is the favoured method because of its flexibility and low
cost. Moreover, the existence of popular libraries like Outlines simplifies the introduction of
constrained decoding to software projects.

If you want to learn more about constrained decoding, then I would highly recommend this
course from deeplearning.ai and dottxt, the creators of Outlines library. Using videos and code
examples, this course will help you get hands-on experience getting structured outputs from
LLMs in the ways discussed in this post.

5.1 References

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers: Princi-
ples, Techniques, € Tools. Pearson/Addison Wesley.

Willard, Brandon T., and Rémi Louf. 2023. “Efficient Guided Generation for Large Language
Models.” https://arxiv.org/abs/2307.09702.

https://www.deeplearning.ai/short-courses/getting-structured-llm-output/
https://www.deeplearning.ai/short-courses/getting-structured-llm-output/
https://www.deeplearning.ai/
https://dottxt.ai/
https://arxiv.org/abs/2307.09702

	Structured Output Generation
	Relying on API Providers `Magic'
	Prompting and Reprompting Based Techniques
	Prompting is Not Enough
	Prompting Tools
	The Cost of Reprompting

	Constrained Decoding
	How it works?
	Deterministic Finite Automata (DFA)
	DFA for Valid Next Tokens Set
	Applying the DFA to LLMs

	Constrained Decoding Tools

	Conclusion
	References

